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 ABSTRACT

In most fielded sensors used for UXO detection and discrimination, the energy in the output of the sensor is calculated and a
decision regarding the presence or absence of a target is made using this statistic.  This approach leads to excessively large
false alarm rates.  In our previous work, we have shown that the careful application of signal detection theory to
electromagnetic induction (EMI) data results in a dramatic reduction of the false alarm rate for UXO detection applications.
In this work, we utilize a decision-theoretic approach to classify metal targets using wideband EMI data.  One algorithm that
is presented incorporates both a theoretical model of the response of a wideband, frequency-domain sensor and the
uncertainties regarding the target/sensor orientation.  The performance of this algorithm has been evaluated using both
simulated and experimental data.  Results from both simulation and measured data indicate that incorporating the uncertainty
associated with the target/sensor relative position into the processor affords a significant performance gain over a processor
that simply uses the predicted response at the mean expected target position.  On the average, for the targets we have
considered, a 60% improvement in discrimination performance is obtained [1].
The integration of a computational model into the statistical signal processing framework along with consideration of the
uncertainty in the target/sensor orientation results in a computationally intensive algorithm.  Because of this fact, we have
also considered several alternative processors that, while sub-optimal, have significantly lowered the computational burden.
In this paper, we will describe these sub-optimal processors, discuss the underlying physical nature of the EMI-based UXO
detection problem that prompted the formulation, and discuss the tradeoffs between performance degradation and
computational requirements.

I. INTRODUCTION
Electromagnetic induction (EMI), ground penetrating radar (GPR) sensors and various other multi-spectral and remote
sensing methods have been used to locate buried landmines and unexploded ordnance (UXO). Among these, EMI is one of
the most widely used sensors for these applications. EMI sensors can effectively detect metal objects. Unfortunately, there is
often a significant amount of metallic debris (clutter) present in the environment.  Some of buried metallic debris can produce
EMI signatures that look similar to signatures obtained from UXO, which results in a large false alarm rate. The large false
alarm rate is the major limiting factor to successful UXO remediations since it results in unacceptably high costs and time
required to remediate a site. Consequently, EMI sensors that utilize traditional detection algorithms based solely on the metal
content suffer from high false alarm rates as well.
Clearly, in UXO detection, it is necessary to achieve high probability of detection (Pd) and low probability of false alarm
(Pfa).  This requires classification or discrimination of metal targets (UXO) from metallic clutter. In order to achieve the goal
of discriminating targets of interest from other pieces of metal, several modifications to traditional EMI sensors have been
considered [2][3][4][5][6]. One promising approach is to operate the EMI sensor in the frequency-domain utilizing wideband
excitation. The frequency dependence of the induced fields excited by buried conducting targets can then be exploited by a
detector. In our previous work [1], we considered classification of various metal objects using wideband frequency-domain
EMI data. The results have shown that the optimal processor affords substantial classification performance improvement for
buried metal targets.  Performance improves on the average by 60% over a standard approach, which usually is a matched-
filter-like processor. The development of the optimal processor integrates a numerical model of wideband frequency-domain
EMI responses and a Bayesian decision-theoretic approach, which incorporates the uncertainties associated with target/sensor
orientations.
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However, the computational burden associated with such an approach is a serious limitation, since it requires a significant
amount of calculation to obtain both the theoretical model predictions as well as the integration over environmental
uncertainties.  Thus, this processor cannot be considered for scenarios that require real-time decision making.  Therefore,
alternative approaches that are sub-optimal but require significantly less computational effort are under development. We
investigated an approach which first normalizes the wideband frequency-domain EMI response then applies matched filter
processor Error! Reference source not found.. This approach is only suitable for those objects whose aspect ratio (length
divided by width) is close to one. This restriction results in signatures that are “parallel” when plotted as a function of
frequency as target/sensor orientation varies. We also consider a more general model, which also utilizes the physical nature
of the wideband EMI response, to reduce computational complexity. Discrimination of UXO and non-UXO objects is
investigated based on this new model. The performance of each of these approaches is discussed in this paper.

II. REVIEW OF PREVIOUS WORK

In our previous work [1] we have investigated discrimination of man-made metallic targets of different dimensions and metal
types under conditions where the target/sensor orientation is unknown, since the exact sensor position (where measurements
are obtained) relative to the underground objects is unknown in practice. An optimal classifier was developed under the
framework of Bayesian decision-theoretic approach, which integrated a forward model prediction of theoretical wideband
frequency-domain EMI response of each target and the uncertainties associated with target/sensor position. The optimal
classifier affords performance gains of 60% on the average over the standard matched filter processor, which does not take
these uncertainties into account, using both simulated and experimental data.
In order to model the wideband EMI signature of these targets, a method of moment (MoM) analysis was used to predict the
theoretical response from the targets [8]. The theoretical calculations are appropriate for highly (but not perfectly) conducting
and permeable targets that can be characterized by body of revolution (BOR), i.e. a target that is rotationally symmetric about
an axis [9]. When the exact dimensions, constitutive parameters of the target, the horizontal and vertical distance from the
center of the sensor to that of the target, and frequencies of interest are specified, the theoretical wideband EMI response,
which is the complex induced voltage, can be calculated. To test the effectiveness of the model, model prediction was
compared to data collected from a prototype wideband frequency-domain EMI sensor, the GEM-3 [10], developed by
Geophex, Ltd. A brief description of the sensor can be found in Sec. III.2.
Five man-made metal targets were used for our previous analysis: an aluminum cone, an aluminum bar-bell, an aluminum
disk, a thick brass disk, and a thin brass disk. Four out of these five targets were used during experimental measurements.
Twenty-one frequencies, ranging from 4kHz to 24kHz in a 1kHz spacing, were used for both simulated and measured data.
The output of the sensor for a particular object is not deterministic, because not only is the electronic system subject to
additive noise, but also the relative position between the sensor and underground object is uncertain. Therefore, it is assumed
that the sensor is subject to a small amount of additive Gaussian noise. This assumption was verified during the experimental
data acquisition. Thus, the distribution of the sensor outputs at a known height and horizontal position is a Gaussian random
vector with mean equal to the theoretical prediction and variance equal to that of the additive noise. Let Hi represent the
hypothesis that the ith target is present, where i=1,…,K. The received data from the ith target can be expressed as:

x A nij ij j= +

where j corresponds to frequency, xij is the sensor recorded data from the ith target, Aij is the model prediction for the ith
target at the jth frequency at a known depth and horizontal position of the target relative to the center of the sensor, and nj is
Gaussian noise with zero mean and variance of 2

jnσ . Let qi represent the a priori probability that hypothesis Hi is true. We
further assumed that the cost of a correct decision is zero, and the cost of any wrong decision equals one. The optimal
solution for this classification problem [11] is to decide that Hi is true if
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is satisfied for any k≠i, where p(x|Hi)  is the probability density or likelihood function of data x given Hi, p(Hi|x) is the a
posteriori distribution or discriminant function [13], and x is the received data from the sensor at a known position. x is a
vector containing both the magnitude and phase information of the response, which are assumed to be independent. Since no
a priori knowledge on the probability of a certain target present is known, a uniform prior is assumed, which results in
qi=1/K. Therefore, when data x is received, we decide in favor of hypothesis Hi where

q p x H q p x H k Ki i k k k( | ) max{ ( | )} ,..., .= = 1
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Thus, we decide in favor of a hypothesis that has the largest a posteriori probability evaluated at data x among the K
probability density functions. After simplification, the alternative discriminant function [13] is:

− − −−( ) ( )x A x Ai
T

iΣ 1

where x is received data from the sensor, Ai is model prediction of the response of ith target and Σ is the covariance matrix of
x. Given the assumptions on the noise process, Σ is a diagonal matrix with σn

2 on the diagonal.
The discriminant function obtained in Eqn. (4) is optimal only when a target is at a known position when all the parameters
are known, and when the sensor is subject to Gaussian noise. It can be implemented as a bank of  “matched” filters. Here, we
refer to the filters as “matched” because (1) the noise is not identically distributed, and (2) the signals are not of equal energy.
These two facts result in a formulation, which is similar to, but not identical to, the traditional matched filter xTAi.
Since the exact position where measurements are obtained is unknown in practice, a more accurate assumption is that the
height and horizontal position are uncertain. In this case, the matched filter bank is not the optimal solution, since it does not
take target/sensor position uncertainties into account. Hence, in order to obtain the optimal alternative discriminant function
for the received data, integration over these uncertainties must be performed, i.e.

dhdxdyyxphpyxhHxpHxp ii ∫∫∫= ),()(),,,|()|(
where h represents the height of the sensor from the target; x, y represent the horizontal position of the center of the target
relative to the sensor; and p(h) and p(x,y) are the a priori distributions of the position variables. Here, it is assumed that the
height, h, and horizontal position x, and y are independent. Monte Carlo integration was used to calculate this integral.
The performance of both the matched filter bank and the optimal classifiers was investigated using both simulated and
measured data, respectively. Four cases were considered in simulations. They are (1) the target is at a known, fixed position,
(2) the height of the sensor from the target is Gaussian distributed with mean of 20 cm and variance of 1.532 cm2 and the
sensor is right above the center of the target, (3) the horizontal position of the target relative to the center of the sensor is
uniformly distributed in a 20 cm by 20 cm square and the height of the sensor is fixed, and (4) both the height and horizontal
position are uncertain, following the same distributions as above. The priors placed on the uncertain positional parameters are
consistent with those observed in demining applications [14].
The measured data was collected at Geophex Ltd. using the GEM-3. For each target, measurements were taken at 164
positions. The choices of these locations follow a Gaussian distribution for height and a uniform distribution for horizontal
position as in the simulations. At each location, two measurements were taken so that errors in data transmission could be
corrected.
Using both simulated and measured data, the optimal processor consistently affords a dramatic performance gain over the
standard matched filter processor. However, because of the computational burden of the optimal processor an alternative sub-
optimal approach was investigated Error! Reference source not found.. This processor avoids the evaluation of multi-
variable integration in Eqn (5) by introducing a simple normalization operation before performing the matched filter.
For the particular class of targets (the target aspect ratio is close to one), normalizing the wideband EMI responses, which
exploits the physical nature of the signals, mitigates the uncertainties of the response due to the unknown target position. In
the theoretical model predictions of the wideband EMI responses for the same target at different heights and horizontal
positions, a somewhat ‘parallel’ structure as a function of frequency is observed, as illustrated in Figure 1. The overall level
varies substantially as the target/sensor orientation changes, but the basic structure of the response as a function of frequency
changes only slightly. Based on this phenomenon, we hypothesized that if the wideband EMI signatures were normalized,
performance could be evaluated using a processor that avoids calculating the integration over position uncertainty (as in Eqn.
(5)). Then, the processor can be implemented as previously described for the matched filter case after normalization.
Therefore, the outputs of the sensor were normalized to force the energy over the frequency range considered to be equal to
unity. This normalization does not change the phase of the response, but the magnitude of the response after normalization is
almost identical as the target/sensor orientation changes.  This operation essentially decreases the uncertainties of the data
collected in an uncertain environment. The sub-optimal processor takes the form of Eqn. (4), which uses the mean signature
after normalization over all uncertainties as Ai for the ith target.
The results of this approach indicated that (1) for the fixed position case, performing the normalization degrades the
performance of the processor, and (2) when the target positions are uncertain, better performance can be achieved if the
output is normalized. In fact, the matched filter performance is quite close to the optimal classifier performance for the
normalized data. This indicated that applying the sub-optimal processor to normalized data only slightly sacrifices

(5)

(4)
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performance, but computational time is reduced significantly. It is noted that the optimal classifier operating on the
normalized data outperforms the optimal classifier operating on the unnormalized data, because the normalization
uncorrelates the signals to a small extent, which improves classification performance [17]. For instance, the average
correlation coefficient decrease before and after normalization between the target 3 and 5 is 0.711x10-4.
Experimental data also validated simulation results. The sub-optimal processor using normalized data performs better in
general than the processor using raw sensor output and the optimal processor after normalization achieves better performance
than the processor without normalization. This performance improvement validates the hypothesis that by normalizing the
sensor data, the uncertainties associated with the sensor/target position can be decreased. Also, the performance of the sub-
optimal processor operating on normalized data is very close to that of the optimal processor operating on normalized data.
However, the computational load is reduced significantly by using the matched-filter-like processor.  Results for the
simulations and experiments described above are summarized in Tables 1 and 2.

Probability of Correct Classification
Target 1 Target 2 Target 3 Target 4 Target 5

No Norm. MF/Opt. 1 1 1 1 1Fixed
Position Norm. MF/Opt. 1 .976 1 .976 1

MF .832 .351 .518 .081 .620No Norm. Opt. .999 .857 .997 .830 1
MF 1 .973 1 .972 1

Height
Uncertain Norm. Opt. 1 .977 1 .978 1

MF .804 .411 .573 .085 .655No Norm. Opt. 1 .828 1 .810 .999
MF 1 .849 1 .754 1

Horizontal
Position
Uncertain Norm. Opt. 1 .866 1 .810 1

MF .758 .340 .506 .073 .492No Norm. Opt. .994 .701 .990 .700 .996
MF 1 .848 1 .759 1

Both Height
& Horiz.
Position
Uncertain Norm. Opt. 1 .879 1 .823 1

Table 1. The performance of the various processor before and after normalization using simulated data when (1) the
target position is known and fixed, (2) the height of the sensor is Gaussian distributed with mean of 20 cm and
variance of 1.532 cm2, the horizontal position is fixed, (3) the horizontal position is uniformly distributed in a 20 cm
by 20 cm square and height is fixed, and (4) both height and horizontal position are random, following the
distributions mentioned above. In the table, 'No Norm.' means processing occurred without normalization, 'Norm.'
means processing followed normalization. 'Opt.' means optimal classifier, and 'MF' indicates matched filter-like
processor.
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Figure 1. The wideband EMI signature of the thick brass disk while the height of the sensor
(left) and the distance from the sensor to the target in a horizontal plane (right) change.
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Target 2 Target 3 Target 4 Target 5
Opt. Proc., No Norm. 0.91 0.77 0.69 0.81
Opt. Proc., Norm. 0 0.98 1 0.99
MF, No Norm. 0.23 0.24 0.03 0.14
MF, Norm. 1 0.99 0.89 0.83

Table 2. The performance of the sub-optimal and optimal processors before and after normalization evaluated on
measured data. In the table, 'MF' represents the matched filter, or sub-optimal processor, 'No Norm.' means
processing occurred without normalization, 'Opt. Proc.' represents the optimal processor, and 'Norm.' means
processing followed normalization.

Using the sub-optimal processor, computational savings are proportional to that required to evaluate the integral shown in
Eqn. (5). If the computational time of the sub-optimal processor is ∆, and the integral described by Eqn. (5) is evaluated by
the Monte Carlo method, and 1000 sets of random numbers representing positions are used for iterations, the optimal
processor takes 1000∆ to obtain the result. The only additional computation required by the sub-optimal processor is the
normalization of the data, which is a simple operation.
In summary, the model-based Bayesian decision-theoretic approach can improve performance significantly over the standard
matched filter processor under the condition that the target/sensor position is uncertain. This approach requires a library of
signatures for each target at all possible target positions and evaluation of a multi-variable integral.  Such an approach is
computationally expensive. Performing normalization can help reduce computational complexity for targets whose signatures
exhibit a parallel structure while target/sensor position changes, however this is a fairly restrictive assumption given the
general class of UXO targets.

III. RESONANCE-BASED APPROACH

1. Background

Since for general targets the frequency-domain EMI response does not simply scale when the target/sensor orientation
changes, the parallel structure of the response (shown in Figure 1) while target/sensor orientation varies will no longer be
observed.  Thus, a simple normalization followed by a matched filter processor will not provide good performance for a more
general class of targets.
Because the concept of high-Q dielectric resonances can be extended to EMI resonances of highly conducting and permeable
targets (at kilohertz frequencies), the real resonant frequency for a dielectric-resonator is analogous to purely imaginary
resonant frequencies for EMI resonances. The resonant frequencies correspond to first-order poles in the complex frequency
plane, thus, the target transfer function can be expressed as [15]

H f d
a f

f j f
n

nn

( ) = +
− ⋅∑

where f represents frequency, d is a DC present when a target is ferrous,  fn is the n-th resonant frequency, an is the coefficient
of the n-th term. This equation is valid at EMI frequencies, characterized by an operating wavelength that is very large
relative to representative target dimensions. Note that f in the numerator of Eqn. (6) is motivated by a high frequency EMI
limit. The resonant frequencies are functions of the dimensions, constitutive parameters of the target, etc.  The resonant
frequencies are independent of the target/sensor orientation; however, the coefficients are a function of the target/sensor
orientation, i.e. the vertical and horizontal relative position of the target relative to the sensor. Therefore, the resonant
frequencies can be used to distinguish objects. In our previous work, the targets considered were non-ferrous, the aspect ratio
was close to one, and the first pole was dominant, so the response could be expressed as

H f
a f

f j f
( ) .≈

− ⋅
1

1

Thus, while target/sensor orientation varies, the coefficient a1 changes, this causes the response to change in overall level, but
the basic structure does not change. Therefore, when the aspect ratio is close to unity, normalization can help reduce
computational complexity by mitigating the correlation across the various target signals.

(6)

(7)
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In general, Eqn. (6) can represent the frequency EMI response of a highly conducting and permeable object. This can also be
expressed in time-domain by performing an inverse Fourier Transform,

h t d a t a f e u tn
n

n n
f t

n

n( ) ( ) ( ) ( )= + −∑ ∑ −δ π π2 2

where δ(t) represents the delta function, and u(t) is the step function. Eqn. (8) is an approximation of the impulse response,
since it is integrated over the whole frequency range, not just those valid for EMI frequencies.  This more general model can
be used to effect discrimination of more general targets.
2. Data description (JPG IV)

Phase IV of the UXO Detection, Identification, and Remediation Advanced Technology Demonstration (ATD) was held at
Jefferson Proving Ground (JPG) in Madison, Indiana from February through October 1998 [17]. The series of JPG
experiments comprises a congressionally mandated program that seeks safer, more economical, and more effective methods
for finding and removing UXO. Two controlled technology demonstration areas were created by the Naval Explosive
Ordnance Disposal Technology Division (NAVEODTECHDIV). Inert UXO and clutter items were emplaced at these two
areas for demonstrators to test their discrimination capability.  The two areas consisted of a 32-hectare area, which used by
demonstrators to self test their technologies, and a 16-hectare area, which used for subsequent technology demonstrations.
Ground truth of the 32-hectare self-test area was provided to demonstrators, while only target location (easting and northing)
information was provided for the 16-hectare demonstration area. Several demonstrators surveyed the sites with their
equipment. Geophex Ltd. is one of the demonstrators.
The UXOs emplaced include 20-mm projectiles, 57-mm projectiles, 60-mm mortars, 76-mm projectiles, 81-mm mortars, 90-
mm projectiles, 105-mm projectiles, 4.2-inch mortars, 152-mm projectiles, and 155-mm projectiles. The objects were
primarily comprised of steel, however, the 81-mm mortars and the 105-mm projectiles were known to also contain
aluminum.
Non-UXO objects consisted of scrap metal cut to weights similar to the above ordnance types.  Weights of objects ranged
from less than that of a 20-mm round, 0.15 pounds, to greater than a 155-mm projectile, 142.5 pounds.  They were comprised
of iron and steel.  Some of the non-UXO objects had aspect ratios similar to that of the UXO targets.
The data analyzed in this paper were measured using the GEM-3 sensor at JPG, which is a prototype wideband frequency-
domain EMI sensor, developed by Geophex, Ltd. [10]. The sensor consists of a pair of concentric circular transmitting coils,
which creates a magnetic cavity at the center, and a small circular receiving coil placed within the magnetic cavity to sense
the weak secondary induced field. The transmitting coils send out a complex waveform consisting of a set of user-defined
frequencies. The sensor records the in-phase and quadrature component of the complex induced magnetic field at the
receiving coil.
During the experiments, eight frequencies were used:  30, 90, 210, 510, 1350, 3570, 9210, and 23,970 Hz. First, a library of
GEM-3 signatures was measured consisting of all the UXO and non-UXO objects present in the 32-hectare site. For each
object, data from three orientations were measured in free space. Then, the sensor was used to survey all the buried UXO and
non-UXO objects in the 16-hectare area.
3. Pole estimation

As mentioned above, the resonant frequencies (poles) are characteristics that can be used to discriminate between objects.
Here, we discuss the approach used to estimate the poles of the frequency-domain response using multiple target/sensor
orientation data. In the GEM-3 library data, targets data from three target/sensor orientations are available for all targets. The
three different orientations are the nose of UXO target 45o up, 45o down, and flat.
Theoretically, an infinite number of modes exists. However, in practice, one or two poles dominate the response. An iterative
least-squares method was utilized to estimate the poles for each target.  One set of poles was selected which bet fit the data
from all three orientations.  The DC shift term and coefficients (d and an in Eqn. (6)) remained free. In Figure 2, a comparison
of the original data to the fitted data using the pole estimated is shown. Clearly, a two-pole fit is much closer to the original
data than a one-pole fit. Since two poles can represent the response very well, a library of the estimated values of the two
poles characterizing each UXO and non-UXO object was built.

(8)
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Figure 2. A comparison of fitted data using one (left) and two (right) poles to the original data for three different
UXO targets and at different target orientations.

4. Detector description

After building the library of poles, each set of poles corresponding to a target is used to fit blind data. A detector, which
utilizes the L2 norm of the error between fitted and original data, was implemented. The error is
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where i represents the ith frequency, i=1,…,8, Oi is the measured data from the GEM-3 at ith frequency, , Fi
(j) is the fitted

data at the ith frequency using poles for jth target, ej
2 is the error between the original data O and the fitted data using poles of

jth target. Ideally, the error corresponding to the correct target, from which the data was measured, is the minimum among all
the targets. Thus, the minimum error of a blind data is considered as the detector output for this data set.  The reciprocal of
this value (used to avoid changing the decision rule) is used to compare to a threshold to make a decision, specifically
whether the data is from a UXO target (H1), or a non-UXO object (H0).
5. Detector performance

Figure 3 illustrates the performance of the approach described above. The improvement in detection probability between the
detector mentioned above and baseline performance of the GEM-3 sensor for this data set is over 12% at false alarm rate of
20%.  The false alarm rate is decreased by 10% when detection probability is held fixed at 68% using this detector.
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Figure 3.  ROC curve of the detector discussed in Sec. III.4.

IV. DISCUSSION AND FUTURE WORK

A general model of the frequency-domain EMI response is used in this paper. By incorporating this model, the target
response can be characterized by first-order poles, furthermore, a detector that utilizes the minimum error between original
data and fitted data using poles corresponding to each target as decision statistic is developed and the performance of such
detector is better than that of standard approach. Such a detector avoids building a library of predicted theoretical response of
each target at every possible position and evaluation of multi-variable integral, thus computational complexity is reduced
significantly. In the future, we will investigate other detection schemes that incorporate this model and statistics of poles of
UXO and non-UXO objects.
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